

Journal of Photochemistry and Photobiology A: Chemistry 98 (1996) 165-169

Concerning the role of oxygen in photocatalytic decomposition of salicylic acid in water

Valeriy Sukharev¹, Robert Kershaw

Department of Chemistry, Brown University, Providence, RI 02912, USA

Received 26 September 1995; accepted 19 February 1996

Abstract

The photocatalyzed oxidation of salicylic acid on pure TiO_2 and ZnO films as well as on TiO_2 films loaded with various amounts of ZnO in N₂O-saturated aqueous solutions has been investigated. It was found that the photoassisted decomposition of salicylic acid did not take place on the irradiated surface of pure TiO_2 and took place on ZnO when N₂O was bubbled through the solution. The deposition of a small amount of ZnO onto the TiO_2 surface was responsible for the appearance of marked photocatalytic activity of material. The information about the electron-scavenger ability of N₂O in interaction with TiO_2 has been obtained by conductivity and photoconductivity measurements. The main conclusion is that the major role of oxygen in photocatalytic oxidation of organic compounds is to be a scavenger for continuous electron removal from photocatalysts.

Keywords: Adsorption; Conductivity; Metal oxides; Photocatalytic decomposition; Salicylic acid

1. Introduction

The application of illuminated semiconductors for the decomposition of organic contaminants in water has been successfully used for a wide variety of compounds [1,2].

The natural oxidant for organic molecules is the oxygen from the air. In a photocatalytic reaction the rate of oxidation by holes has to be balanced by the rate of reduction of electrons. Either the oxidation or the reduction reaction can be the rate-determining step. The results of many experiments have indicated the existence of a larger steady-state concentration of photogenerated bulk electrons compared with the hole concentration [3,4]. Thus electrons can accumulate on the photocatalyst and increase the rate of electron-hole recombination. This causes a decrease in the hole-initiated oxidation of organic molecules. Hence, this excess in photogenerated electron concentration must be removed from the photocatalyst in order to prevent this recombination increase. The molecular oxygen dissolved in solution plays the role of reagent bonding of the photogenerated electrons [5-7]. It was found [3,8] that photocatalytic activity is nearly completely suppressed in the absence of oxygen and the steadystate concentration of oxygen has a profound effect on the rate of photocatalyzed decomposition of organic compounds.

It should be noted that in olecular oxygen dissolved in solution takes part also in other stages of this complex process. For example, it was shown by Okamoto et al. [9] that hydroxyl radicals are formed not only via holes but also via hydrogen peroxide (H_2O_2) from O_2^- . Nevertheless this participation is not critical for the organic photodecomposition as a whole. This is confirmed by the results of Kamat and coworkers [10] and Kim and Anderson [11] which indicate that titanium dioxide (TiO₂) films with an externally applied anodic potential (vs. a saturated calomel electrode) are characterized by a high efficiency in deaerated solutions. For more careful understanding of the role played by dissolved oxygen in photodegradation of organic compounds, another electron scavenger can be employed. The employment of nitrous oxide as a possible scavenger of photogenerated electrons has been investigated recently by Serpone et al. [12]. It was shown that in nitrous-oxide (N₂O)-purged aqueous TiO₂ suspensions there was no effect on the photo-oxidation of phenol. This indicates that N₂O probably does not scavenge electrons from illuminated TiO₂ particles. At the same time, Kamat and Patrick [13] have shown that the trapped electrons on the zinc oxide (ZnO) surface decay faster when the ZnO suspension is saturated with N₂O than in deaerated suspension. The latter indicates the ability of N2O to act as an electron scavenger in the case of ZnO colloids. It should be noted that the different behaviors of N₂O under the interaction

¹ Present address: LSI Logic Corporation, 3115 Alfred Street, MS J-201, Santa Clara, CA 95054, USA.

^{1010-6030/96/\$15.00 © 1996} Elsevicr Science S.A. All rights reserved *PII* S1010-6030(96)04338-9

with TiO₂ and ZnO has been found in many studies [14–17]. For example, Kudo and Sakata [14] have demonstrated the photodecomposition of N₂O into nitrogen (N₂) and oxygen (O₂) at room temperature on Pt/TiO₂ photocatalyst in the presence of water vapor. No photocatalytic activity was obtained in this study on Pt/SiO₂ and pure TiO₂, showing that both Pt and TiO₂ were indispensable under these conditions. Cunningham et al. [15] in their work have shown that gaseous N₂O dissociated at room temperature when in contact with the illuminated surface of powdered ZnO. The comparison of these results indicates that photodecomposition of N₂O does not take place on a pure TiO₂ surface but takes place on a pure ZnO surface.

In this paper we investigate the photocatalytic efficiency of pure TiO_2 and ZnO films as well as TiO_2 films loaded with various amounts of ZnO in determining photodegradation of salicylic acid in water when N_2O is bubbled through the solution. Salicylic acid is chosen as a prototype molecule because of its low volatility, suitable solubility in water and well-known spectral characteristics. The effect of N_2O on the electrical conductivity of pure TiO_2 films in the dark and under illumination are also investigated.

2. Experimental section

2.1. Preparation of TiO₂ films

Titanium(IV) oxide films have been coated inside Pyrex tubes by an ultrasonic nebulization and pyrolysis technique [18]. The deposition apparatus was described by Wold and coworkers [19]. The reactor used in this investigation was heated by means of a two-zone mirror furnace (Transtemp Co., Chelsea, MA). Diisopropoxy-titanium-bis(acetylacetonate) was used as a precursor for the preparation of these thin films. It was synthesized according to the method of Yamamoto and Kambara [20]. An alcohol solution of 0.1 M diisopropoxy-titanium-bis(acetylacetonate) was nebulized by a commercial ultrasonic humidifier (Holmes Air) and carried into a Pyrex tube with an inside diameter of 2 cm by oxygen. The Pyrex tube for the deposition of the film was heid parallel to the carrier gas flow in the furnace and was rotated by a low speed motor to achieve best uniformity. To obtain a band of film 2 cm wide, the remainder of the tube was masked with an aluminum foil. Typical reaction parameters were as follows: deposition temperature, 450 °C; argon flow rate, 2.8 1 min⁻¹; distance between nozzle and front edge of the film, 7.5 cm. Under such conditions, a film of 350 nm in thickness could be grown in 10 min using 6 ml of precursor solution. All deposited films were post-annealed in a flowing O₂ atmosphere at 450 °C for 20 min.

2.2. Preparation of ZnO films

ZnO films have been coated inside Pyrex tubes by the same ultrasonic nebulization and pyrolysis technique. Zinc 2,4pentanedionate (acetylacetonate) was used as a precursor for the preparation of these thin films.

2.3. Thermal decomposition of zinc acetate on TiO_2 films

Zinc acetate was reduced onto titanium(IV) oxide films by thermal decomposition. 30 ml of zinc acetate aqueous solution was added to the Pyrex tube coated inside with transparent TiO₂ film and allowed to soak for 5 min. The concentration of zinc acetate aqueous solution lay in the interval $10^{-3}-10^{-1}$ M. After the removal of zinc acetate solution the tube was heated in flowing O₂ at 400 °C for 20 min. The sample obtained by this way was then rinsed with distilled water to remove any excess zinc acetate remaining on the film.

2.4. Measurement of photocatalytic activity

The photocatalytic activities of titanium(IV) oxide films were evaluated by the degradation of salicylic acid. 30 ml of an aqueous 6×10^{-5} M salicylic acid solution were added to a Pyrex tube whose inside surface was coated with a photocatalyst film. The sample to be measured was then irradiated with a 150 W mercury-xenon short arc lamp whose output was passed through a Pyrex filter. The differential absorbance at 296 nm (absorption peak of salicylic acid) was measured using a Perkin-Elmer 552 A spectrophotometer. The change in concentration of salicylic acid of the irradiated sample as a function of time was compared with the reference sample of distilled water.

The photocatalytic activity of these catalysts was measured in the apparatus shown in Fig. 1. N_2O was bubbled through the solution. The measurements of the degradation rates of salicylic acid when different photocatalysts were employed were carried out under identical experimental conditions. The catalyst surface was regenerated each time before activity measurement. After each measurement, the Pyrex tube was filled with distilled water and the film was irradiated by the four commercial fluorescent lamps. The reproducibility of

Fig. 1. Photocatalytic cell.

the value of salicylic acid adsorption taking place in the dark when argon was bubbled through the solution was chosen as the criteria for full surface regeneration. In this study, the films were all irradiated for the same time and changes in the concentration of salicylic acid as a function of deposited ZnO amount were compared with the values obtained from the reference sample. H_2O_2 was analyzed spectrometrically using TiOSO₄ as the reagent [21].

2.5. Measurement of TiO_2 conductivity response caused by N_2O adsorption

The titanium(IV) oxide films used for conductivity response measurements were prepared in the same manner as the film for photocatalytic investigations. The only difference was that these films were deposited on 1 cm×1 cm square silica substrates. The films were contacted via gold wires attached with gold paint. Conductance measurements were made by applying between 10^{-7} and 10^{-5} A through the current probes and measuring the voltage drop across the voltage probes using a precision voltmeter. The response to various gases was measured in a special chamber, which could be held at various temperatures. The gaseous atmosphere in the test chamber was switched by means of solenoid valves.

3. Results and discussion

All experiments have been made in the cell shown in Fig. 1. Preliminary measurements were carried out in order to eliminate other possible factors which can be responsible for an observed decrease in the salicylic acid concentration. One such possibility is the adsorption of salicylic acid on the TiO₂ or ZnO/TiO₂ film surface. In order to evaluate this influence, the change in the salicylic acid concentration caused by adsorption was measured. During this process, argon was bubbled through the solution. Irradiation of the catalyst was

Fig. 2. Dependences of the concentration of salicylic acid on time under different conditions: regions (a), argon bubbling in the dark; regions (b), argon bubbling under the irradiation; regions (c), N₂O bubbling under the irradiation; curve 1, pure TiO₂; curve 2, pure ZnO; curves 3–5, TiO₂ with different amounts of ZnO reduced from aqueous solutions with different concentration of zinc acetate (curve 3, 10^{-3} M; curve 4, 10^{-2} M; curve 5, 10^{-1} M).

carried out only after complete termination of any adsorptioninduced change. The initial irradiation of these films under an argon atmosphere was accompanied by a significant apparent decrease in salicylic acid concentration. Additional radiation did not result in a further decrease in the acid concentration. This observed decrease in salicylic acid concentration may arise from photoadsorption. The possibility of photoadsorption in such systems has previously been mentioned by Cunningham and Al-Sayyed [22].

The comparative results of this study can be seen from Fig. 2. Curves 1-5 represent the changes in concentration of salicylic acid with irradiation time for pure TiO₂ and pure ZnO films and for TiO₂ films loaded with various amounts of ZnO. Regions (a) indicate the decrease in concentration of salicylic acid when argon is bubbled into the cell which is kept dark. Regions (b) show the change in acid concentration when argon is bubbled into the cell when illuminated. Region (c) shows the change which occurs when N₂O is bubbled into the solution with the same flow rate, 110 ml min⁻¹. It was shown in [15,16] that N₂O oxide dissociated, under illumination, to produce molecular nitrogen and atomic oxygen on a ZnO surface. It can be seen from region (c), that the photoassisted decomposition of salicylic acid does not take place on an irradiated bare surface of TiO₂ when N₂O is bubbled into the solution. This lack of photoactivity can be correlated with data obtained by Serpone et al. [12] for an aqueous solution of phenol. The deposition of even a small amount of ZnO on a TiO₂ surface is responsible for the appearance of marked photocatalytic activity of the oxide surface. The data plotted in Fig. 2 (regions (c)) indicate there is a marked photocatalytic activity of the ZnO/TiO₂ catalyst towards decomposition of salicylic acid compared with uncoated TiO₂. The comparative data shown for these films were obtained under similar experimental conditions. Hence, the increase in observed activity must be associated with the role of ZnO on the surface of the TiO_2 film. It should be noted that, when argon is substituted for N₂O at the completion of regions (c), further film irradiation did not give any additional decrease in salicylic acid concentration.

Fig. 3 shows the relative decomposition of salicylic acid as a function of the concentration of the zinc acetate aqueous solution used for depositing ZnO on a TiO₂ surface. It can be seen that the photocatalytic efficiency reached a maximum

Fig. 3. Rate of photodecomposition of salicylic acid as a function of the concentration of zinc acetate aqueous solution (---): ---, rate of photodecomposition of salicylic acid on pure ZnO film.

value when a 10⁻² M zinc acetate aqueous solution was used for the impregnation. Further increase in solution concentration leads to a decrease in the photocatalytic activity of the catalyst toward the degradation of salicylic acid. It should be noted that the TiO₂ photocatalysts impregnated with an aqueous solution of zinc acetate were characterized by an enhanced photocatalytic activity in comparison with the pure ZnO film. This fact can be related to the vectorial transfer of electrons and holes, which takes place in coupled semiconductors possessing different redox energy levels for their corresponding conduction and valence bands [23]. As was shown by Serpone et al. [12], in the ZnO/TiO₂ combination the electron transfer occurs from the conduction band of lightactivated ZnO to the conduction band of light-activated TiO2 and, conversely, hole transfer can take place from the valence band of TiO₂ to the valence band of ZnO. This efficient charge separation increases the lifetime of the charge carriers and enhances the efficiency of the interfacial charge transfer to adsorbed substrates. Serpone et al. [12] have observed an increase in the photocatalytic activity of the ZnO/TiO₂ couple in comparison with ZnO suspension toward the degradation of phenol in air-saturated aqueous solution. Identical results have been obtained in our investigation concerning the ZnO/TiO₂-assisted photodecomposition of salicylic acid in N₂O-saturated aqueous solution. Thus we can conclude that N₂O scavenges photogenerated electrons in the ZnO and ZnO/TiO_2 catalysts in a manner similar to chemisorbed molecular oxygen. "Zero" photocatalytic activity of a pure TiO₂ film in such conditions indicates another mechanism of

Fig. 4. Resistance vs. time from TiO₂ film measured for sequential N_2 - N_2O cycles.

Fig. 5. Photoresistance vs. time for a TiO2 film measured for sequential N2-N2O cycles.

interaction between N_2O and TiO_2 than that in the N_2O/ZnO system.

To determine the scavenger ability of N_2O in interaction with TiO_2 we investigated the N_2O adsorption-induced response in the resistance of a TiO_2 film. Figs. 4 and 5 show the time-dependent changes in the resistance of a TiO_2 film caused by the interaction with N_2O coming from the gas phase. Fig. 4 shows the resistivity response when the TiO_2 sample has been kept in the dark and Fig. 5 shows this response when the sample has been irradiated by the full light of a Hg-Xe lamp, whose output was passed through a Pyrex filter. It can be seen from these figures that changes in the gaseous atmosphere from chemically neutral nitrogen to N_2O produced upward excursions of the TiO_2 resistance, while the N_2 atmosphere caused the resistance of the film to return to its original value.

Fig. 6 shows the time-dependent change in the TiO₂ film resistance measured for the air-N₂O cycle. It can be seen that in this case the N₂O produced a downward resistance excursion. It should be noted that the steady-state value of the TiO₂ resistance in the N₂O atmosphere was the same in both cycles: N₂-N₂O and air-N₂O. This fact supports the conclusion about the adsorption-induced character of N₂O-caused resistance change.

Fig. 7 shows the photoconductivity decays in TiO₂ film caused by stopping the illumination in two cases: N₂ and N₂O atmospheres. Upon stopping the illumination the photoconductivity decays faster in the case of a N₂O atmosphere than in N₂, once more confirming the electron scavenger nature of

Fig. 6. Resistance vs. time for a TiO_2 film measured for sequential air-N₂O cycle.

Fig. 7. Photoconductance decay in a TiO_2 film: curve 1, N₂O atmosphere; curve 2, N₂ atmosphere.

 N_2O molecules in the TiO₂- $N_2O(g)$ system. Saturation of the gas atmosphere with water vapor did not change the quality character of the phenomenon.

Thus, in both the N_2O -TiO₂ and the N_2O/ZnO systems the N_2O demonstrates the ability to withdraw the photogenerated electrons. The different characters of the N_2O influence on the photo-oxidation of organic compounds in water on ZnO and TiO₂ catalysts can be related to the differences in photodecomposition of N_2O on ZnO and TiO₂.

Indeed, the photodecomposition of N_2O taking place on a ZnO surface [14–16] leads to the formation of chemisorbed oxygen species, which can participate in the routes usual for air-equilibrated solutions [2,9]. For example,

$$N_{2}O + e^{-} \longrightarrow N_{2} + O^{-}$$

$$N_{2}O + O^{-} \longrightarrow N_{2} + O_{2}^{*-}$$

$$O_{2}^{*-} + H^{+} \longrightarrow HO_{2}^{*}$$

$$O_{2}^{*-} + HO_{2}^{*} \longrightarrow O_{2} + HO_{2}^{-} \longrightarrow H_{2}O_{2}$$

$$O_{2}^{*-} + H_{2}O_{2} \longrightarrow OH^{*} + OH^{-} + O_{2}$$

This dynamical behavior can be responsible for continuous electron removal from an illuminated ZnO surface as takes place in air-saturated solutions.

In the case of TiO₂, there is no N₂O photodecomposition at room temperature. Thus the first dose of N₂O chemisorbed on the TiO₂ surface in the charged form (N_2O^-) will prevent the further withdrawal of photogenerated electrons. It should be noted, that the formation of N_2O^- anion radicals on the TiO₂ surface under UV irradiation has been investigated by Anpe et al. [17]. This phenomenon could be responsible for the "zero" photocatalytic activity of a TiO₂ slurry or films in N₂O-saturated aqueous solutions. In order to clarify this point, H₂O₂ formation on the illuminated ZnO and TiO₂ surfaces when N₂O was bubbled through the water was measured under typical experimental conditions. It was found that H_2O_2 was produced over illuminated ZnO surface and no H_2O_2 was detected in the case of TiO₂. These results correspond to the experimental data, obtained by Hoffman and coworkers [24,25], indicating that H_2O_2 is produced on illuminated ZnO and TiO₂ surfaces directly by the reduction of adsorbed dioxygen by conduction band electrons. No H_2O_2 was detected in the absence of oxygen.

Thus on the TiO_2 surface in air-equilibrated aqueous solutions the reactions of superoxide ions removing them from the catalysts surface are very important in the mechanisms of the photocatalytic degradation of organic compounds.

4. Conclusions

The different characters of the photocatalytic action of ZnO and TiO₂ films towards the degradation of salicylic acid in water saturated with N₂O is related to the difference in the photodecomposition of N₂O on ZnO and TiO₂. Despite the fact that in both systems the N₂O demonstrates the electron scavenger ability, the photodecomposition of salicylic acid takes place only when the decomposition of N_2O into N_2 and O_2 takes place. We conclude that the reactions of superoxide ions, formed on the TiO₂ surface in air-equilibrated aqueous solutions as well as on the ZnO surface in N_2O -saturated aqueous solutions, removing them from catalysts surface, are very important in photoassisted decomposition of organic compounds.

Acknowledgments

The authors are grateful to Professor A. Wold for stimulating discussions. This research was supported by the National Science Foundation under Grant DMR 9016302, that was cordially appreciated.

References

- D.F. Ollis, E. Pelizzetti and N. Serpone, Environ. Sci. Technol., 25 (1991) 1523.
- [2] E. Pelizzetti and C. Minero, *Electrochim. Acta*, 38 (1993) 47, and references cited therein.
- [3] C.-M. Wang, A. Heller and H. Gerischer, J. Am. Chem. Soc., 114 (1992) 5230.
- [4] S.T. Martin, H. Herrmann, W. Choi and M.R. Hoffmann, J. Chem. Soc., Faraday Trans., 90 (1994) 3315.
- [5] H. Gerischer and A. Heller, Electrochem. Soc., 139 (1992) 113.
- [6] I. Izumi, W.W. Dunn, K.O. Wilbourn, F.R. Fan and A.J. Bard, J. Phys. Chem., 84 (1980) 3207.
- [7] H. Gerischer and A. Heller, J. Phys. Chem., 95 (1991) 5261.
- [8] M. Barbeni, E. Pramanro and E. Pelizzetti, Nouv. J. Chim., 8 (1984) 544.
- [9] K.-I. Okamoto, Y. Yamamoto, H. Tanaka and M. Tanaka, Bull. Chem. Soc., 58 (1985) 2015.
- [10] K. Vinodgopal, S. Hotchandani and P.V. Kamat, J. Phys. Chem., 97 (1993) 9040.
- [11] D.H. Kim and A. Anderson, Environ. Sci. Technol., 28 (1994) 479.
- [12] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti and H.J. Hidaka, Photochem. Photobiol. A: Chem., 85 (1995) 247.
- [13] P.V. Kamat and B. Patrick, J. Phys. Chem., 96 (1992) 6829.
- [14] A. Kudo and T. Sakata, Chem. Lett., (1992) 2381.
- [15] J. Cunningham, J.J. Kelly and A.L. Penny, J. Phys. Chem., 75 (1971) 617.
- [16] N.-B. Wong, Y.B. Taarit and J.H. Lunsford, J. Chem. Phys., 60 (1974) 2148.
- [17] M. Anpo, N. Aikawa and Y. Kubokawa, J. Chem. Soc., Chem. Commun., (1984) 644.
- [18] Y.-M. Gao, P. Wu, K. Dwight and A. Wold, J. Solid State Chem., 90 (1991) 228.
- [19] W.W. Xu, R. Kershaw, K. Dwight and A. Wold, Mater. Res. Bull., 25 (1990) 357.
- [20] A. Yamamoto and S. Kambara, J. Am. Chem. Soc., 79 (1957) 4344.
- [21] H. Pobiner, Anal. Chem., 33 (1961) 1423.
- [22] J. Cunningham and G. Al-Sayyed, J. Chem. Soc., Faraday Trans., 86 (1990) 3935.
- [23] N. Serpone, E. Borgarello and M. Gratzel, J. Chem. Soc., Chem. Commun., (1984) 342.
- [24] A.J. Hoffman, E.R. Carraway and M.R. Hoffmann, Environ. Sci. Technol., 28 (1994) 776.
- [25] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95 (1995) 69.